Exploring US Business Cycles with Bivariate Loops using Penalized Spline Regression

نویسندگان

  • Göran Kauermann
  • Timo Teuber
  • Peter Flaschel
چکیده

The phrase business cycle is usually used for short term fluctuations in macroeconomic time series. In this paper we focus on the estimation of business cycles in a bivariate manner by fitting two series simultaneously. The underlying model is thereby nonparametric in that no functional form is prespecified but smoothness of the functions are assumed. The functions are then estimated using penalized spline estimation. The bivariate approach will allow to compare business cycles, check and compare phase lengths and visualize this in forms of loops in a bivariate way. Morevover, the focus is on separation of long and short phase fluctuation, where only the latter is the classical business cycle while the first is better known as Friedman or Goodwin cycle, respectively. Again, we use nonparametric models and fit the functional shape with P-splines. For the separation of long and short phase components we employ an Akaike criterion. JEL CLASSIFICATION SYSTEM FOR JOURNAL ARTICLES: C32, C14, E32.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariate Penalized Splines for Regression

In this paper the asymptotic behavior of penalized spline estimators is studied using bivariate splines over triangulations and an energy functional as the penalty. The rate of L2 convergence is derived, which achieves the optimal nonparametric convergence rate established by Stone (1982). The asymptotic normality of the penalized spline estimators is established, which is shown to hold uniform...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Spline Estimator for the Functional Linear Regression with Functional Response

The article is devoted to a regression setting where both, the response and the predictor, are random functions defined on some compact sets of R. We consider functional linear (auto)regression and we face the estimation of a bivariate functional parameter. Conditions for existence and uniqueness of the parameter are given and an estimator based on a B-splines expansion is proposed using the pe...

متن کامل

Nonparametric M-quantile Regression via Penalized Splines

Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...

متن کامل

Nonparametric Small Area Estimation Using Penalized Spline Regression

We propose a new small area estimation approach that combines small area random effects with a smooth, nonparametrically specified trend. By using penalized splines as the representation for the nonparametric trend, it is possible to express the small area estimation problem as a mixed effect regression model. We show how this model can be fitted using existing model fitting approaches such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006